Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Волновая функция. Итак, микрочастицы не подчиняются законам классической механики, их поведение нельзя описать принятыми в классической физике способами




Итак, микрочастицы не подчиняются законам классической механики, их поведение нельзя описать принятыми в классической физике способами. Этот факт заставил ученых создать новую теорию. Новая механика, названная квантовой, основывалась на идеях Планка, Эйнштейна, Борна и де Бройля. Основоположниками стали австриец Эрвин Шредингер (1887 – 1961), немец Вернер Карл Гейзенберг (1901 – 1976) и англичанин Поль Адриен Морис Дирак (1902 – 1984).

Одной из основных при этом стала задача математического описания поведения микрочастиц, причем такое, чтоб характеризующая их функция отражала одновременно и волновые и корпускулярные свойства.

Рассмотрим картину, образующуюся при дифракции электронов на двух щелях. В каждой точке фотопластинки степень почернения, вызванного ударами дифрагированных электронов, определяется интенсивностью волн де Бройля в направлении данной точки (рис. 4.2). Напомним, что согласно волновой теории света, число фотонов в данной точке дифракционной картины задается квадратом амплитуды световой волны, то есть ее интенсивностью. С другой стороны, число электронов в каждой точке дифракционной картины определяется вероятностью их попадания в данную точку. Чтобы учесть волновые свойства микрочастиц, де Бройль предложил рассматривать некую функцию Ψ(x,y,z,t), меняющуюся по волновому закону, т.е. как волну де Бройля (см. выше):

(4.11)

где – вектор, определяющий положение частицы в пространстве. Ψ(x,y,z,t) была названа волновой функцией.

Идея использовать функцию вида (4.11) возникла в связи с тем, что поведение свободной микрочастицы имело выраженную аналогию с поведением световой волны, описываемой волновыми уравнения колебаний векторов электрической и магнитной напряженностей:

(4.12)

где для учета корпускулярных свойств волновые параметры и заменены с учетом формул (4.1, 4.2) энергией и импульсом рассматриваемой частицы:

(4.13)

Однако, не следует думать, что волновая функция получена простой подстановкой соответствующих параметров в выражения (4.12). Она лишь имеет аналогичную формулировку и отражает корпускулярно-волновые особенности как поведения микрочастиц, так и распространения света.

Правильную интерпретацию волновой функции дал М. Борн в 1926 г. Сама волновая функция имеет комплексное значение и не обладает физическим смыслом – то есть в природе не существует такого параметра, измерение которого дало бы значение, равное волновой функции.

Согласно Борну, физический смысл имеет квадрат модуля волновой функции, который пропорционален вероятности обнаружить частицу в момент времени t в объеме dV (dx, dy, dz) вокруг точки (x, y, z):

(4.14)

(4.15)

где Ψ* – функция, комплексно сопряженная с Ψ.

Таким образом, в квантовой механике вводится так называемая волновая функция, которая полностью описывает состояние микрочастицы и при этом отражает как ее корпускулярные, так и волновые свойства.

Вероятность обнаружить частицу в элементе объема dV равна:

(4.16)

Вероятность же нахождения частицы в конечном объеме V, согласно теореме сложения вероятностей, равна:

(4.17)

где интегрирование проводится по координатам x, y, z. Очевидно, что сам факт существования частицы означает, что вероятность найти ее где-либо в бесконечном объеме равна 1:

(4.18)

Выражение (4.18) называется условием нормировки волновой функции.

Волновая функция Ψ (x, y, z, t) является комплексной, конечной (в противном случае вероятность обнаружения частицы может оказаться больше 1), однозначной и непрерывной. Забегая вперед, уточним, что непрерывными должны быть и частные производные , , , .

Кроме того, волновая функция удовлетворяет принципу суперпозиции: если система может находиться в различных состояниях, описываемых волновыми функциями Ψ1, Ψ2,..., Ψn,..., то она может находиться в состоянии Ψ, описываемом линейной комбинацией этих функций:

(4.19)

где Cn (n = 1, 2,...) – произвольные комплексные числа.

С помощью волновой функции можно найти средние значения физических величин, таких как средние скорость, расстояние электрона от ядра и другие. В частности средняя скорость частицы будет равна:

(4.20)




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 728; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.