Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Перемещения при изгибе. Метод начальных параметров




Изгиб балки сопровождается искривлением ее оси. При попе­речном изгибе ось балки принимает вид кривой, расположенной в плоскости действия поперечных нагрузок. При этом точки оси по­лучают поперечные перемещения, а поперечные сечения соверша­ют повороты относительно своих нейтральных осей. Углы поворота поперечных сечений принимаются равными углам наклона j, каса­тельной к изогнутой оси балки (рис. 5.23).

Рис. 5.23

Прогибы и углы поворотов в балках являются функциями коор­динаты z и их опре­деление необходимо для расчета жест­кости. Рассмотрим изгиб стержня в од­ной из главных пло­скостей например, в плоскости yz. Как показывает практи­ка, в составе реаль­ных сооружений стержни испытыва­ют весьма малые искривления (y max/ l = 10-2 - 10-3, где y max - мак­симальный прогиб; l - пролет балки).

В этом случае неизвестными функциями, определяющими по­ложение точек поперечных сечений балки являются y (z) и j (z) = = a (z) (рис.5.23). Совокупность значений этих параметров по дли­не балки образуют две функции от координаты z - функцию пере­мещений y (z) и функцию углов поворота j (z). Из геометрических построений (рис. 5.23) наглядно видно, что угол наклона каса­тельной к оси z и угол поворота поворота поперечных сечений при произвольном z равны между собой. В силу малости углов поворота можно записать:

. (5.17)

Из курса математического анализа известно, что кривизна пло­ской кривой y (z) выражается следующей формулой:

.

Если рассмотреть совместно соотношение (5.9) и последнее выражение, то получим нелинейное дифференциальное уравнение изогнутой оси балки, точное решение которого, как правило, затруднительно. В связи с малостью величины по сравнению с единицей последнее выражение можно существенно упростить, и тогда

. (5.18)

Учитывая (5.9), из (5.18) получим следующее важное диф­ференциальное соотношение

, (5.19)

где Ix - момент инерции поперечного сечния балки, относительно ее нейтральной оси; Е - модуль упругости материала; E Ix - изгиб­ная жесткость балки.

Уравнение (5.19), строго говоря, справедливо для случая чис­того изгиба балки, т.е. когда изгибающий момент Mx (z) имеет по­стоянное значение, а поперечная сила равна нулю. Однако это уравнение используется и в случае поперечного изгиба, что равно­сильно пренебрежению искривлений поперечных сечений за счет сдвигов, на основании гипотезы плоских сечений.

Введем еще одно упрощение, связанное с углом поворота попе­речного сечения. Если изогнутая ось балки является достаточно по­логой кривой, то углы поворота сечений с высокой степенью точ­ности можно принимать равными первой производной от прогибов. Отсюда следует, что прогиб балки принимает экстремальные значе­ния в тех сечениях, где поворот равен нулю.

В общем случае, для того, чтобы найти функции прогибов y (z) и углов поворота j (z), необходимо решить уравнение (5.19), с уче­том граничных условий между смежными участками.

Для балки, имеющей несколько участков, определение формы упругой линии является достаточно сложной задачей. Уравнение (5.19), записанное для каждого участка, после интегрирования, со­держит две произвольные постоянные.

На границах соседних участков прогибы и углы поворота являются непрерывными функциями. Данное обстоятельство позволяет определить необходимое число граничных условий для вычисления произвольных постоянных интегрирования.

 

Если балка имеет n - конечное число участков, из 2 n числа граничных условий получим 2 n алгебраических уравнений относительно 2 n постоянных ин­тегрирования.

Если момент и жесткость являются непрерывными по всей длине балки функциями Mx (z) и E Ix (z), то решение может быть получено, как результат последовательного интегрирования урав­нения (5.19) по всей длине балки:

интегрируя один раз, получаем закон изменения углов поворота

,

интегрируя еще раз, получаем функцию прогибов

.

Здесь C 1 и С 2 произвольные постоянные интегрирования долж­ны быть определены из граничных условий.

Если балка имеет постоянное поперечное сечение по длине, то для определения функций прогибов и углов поворота удобно при­менить метод начальных параметров, суть которого в сле­дующем.

Рис. 5.24

Рассмотрим балку (рис. 5.24) с постоянным поперечным сече­нием, нагруженную вза­имоуравновешенной си­стемой положительных силовых факторов (т.е., вызывающих вертикаль­ные перемещения сече­ний балки в положи­тельном направлении оси y). Начало системы координат поместим на левом конце балки так, чтобы ось z проходила вдоль оси балки, а ось y была бы направлена вверх. На балку действуют: момент М, сосре­доточенная сила Р и равномерно распределенная на участке бруса нагрузка интенсивностью q (рис. 5.24).

Задача заключается в том, чтобы выявить особенности, вноси­мые в уравнение упругой линии, различными типами внешних си­ловых факторов. Для этого составим выражение изгибающих мо­ментов для каждого из пяти участков заданной системы.

Участок I (0£ z £ l 1 ) Mx ( z ) = 0.

Участок II ( l 1 £ z £ l 2 ) Mx ( z ) = M.

Участок III ( l 2 £ z £ l 3 ) Mx ( z ) = M + P (z - l 2).

Участок IV ( l 3£ z £ l 4) Mx ( z ) = M + P (z - l 2) + .

Уч-ток V( l 4 £ z £ l 5) Mx ( z ) = M + P (z - l 2) + .

На участке V, где распределенная нагрузка отсутствует, при выводе выражения для изгибающего момента, с целью сохранения рекуррентности формул для разных участков была приложена взаимоуравновешенная распределенная нагрузка.

Для вывода обобщенного выражения изгибающего мо­мента введем следующий оператор , означающий, что члены выражения, стоящее перед ним следует учитывать при z > li и иг­норировать при z £ li. На основании этого, обобщенное выражение момента Mx (z) для произвольного сечения z может быть записано единой формулой:

Mx (z) = M + P (z - l 2) + -

. (5.20)

Подставляя (5.20) в (5.19) и дважды интегрируя, получим выра­жение для прогибов:

E Ix y (z) = C 0 + C 1 z + +

+ - . (5.21)

Постоянные интегрирования C 0 и C 1 по своей сути означают:

C 0 = E Ix y (0), C 1 = (5.22)

и определяются из граничных условий на левом конце балки. Тогда формула для прогибов примет следующий оконча­тельный вид:

E Ix y (z) = E Ix y 0 + z + + +

+ - . (5.23)

Соответственно, формула для углов поворотов сечений балки определяется из (5.23) простым дифференцированием:

E Ix j (z) = + +

+ - . (5.24)

Как видно, для определения прогибов и углов поворота балок данным методом начальных параметров достаточно знание лишь значений прогиба y 0 , угла поворота j0 в начале системы коорди­нат, т.е. так называемых начальных параметров. Поэтому дан­ный метод и называется методом начальных параметров.




Поделиться с друзьями:


Дата добавления: 2015-06-30; Просмотров: 307; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.018 сек.