Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Единицы измерения ионизирующих излучений. Дозиметрические величины




 

В качестве единицы активности принято одно ядерное превращение в секунду. В целях сокращения используется более простая единица измерения – один распад в секунду (расп/с). В системе СИ она получила название беккерель (Бк). В практике радиационного контроля, в том числе и в Чернобыле, до последнего времени широко использовалась внесистемная единица активности – кюри (Ки). Один кюриэто 3,7×1010 ядерных превращений в секунду.

Концентрация радиоактивного вещества обычно характеризуется концентрацией его активности. Она выражается в единицах активности на единицу массы: Ки/т, мКи/г, кБк/кг и т.п. (удельная активность). На единицу объема – Ки/м3, мКи/л, Бк/см3 и т.п. (объемная концентрация) или на единицу площади – Ки/км2, мКи/см2 и т.п.

Для измерения величин, характеризующих ионизирующее излучение, исторически первой появилась единица «рентген». Это мера экспозиционной дозы рентгеновского или гамма-излучений. Позже для измерения поглощенной дозы излучения добавили «рад».

Доза излучения (поглощенная доза) – энергия радиоактивного излучения, поглощенная единицей массы облучаемого вещества или человеком. С увеличением времени облучения доза всегда растет. При одинаковых условиях облучения она зависит от состава вещества. Поглощенная доза нарушает физиологические процессы в организме и приводит в ряде случаев к лучевой болезни различной степени тяжести. Для измерения поглощенной дозы излучения в системе СИ предусмотрена специальная единица – грей (Гр). 1 грей – это такая единица поглощенной дозы, при которой 1 кг облучаемого вещества поглощает энергию в 1 джоуль (Дж). Следовательно,

1 Гр = 1 Дж/кг.

Поглощенная доза излучения является основной физической величиной, определяющей степень радиационного воздействия.

Мощность дозы (мощность поглощенной дозы) – превращение дозы в единицу времени. Она характеризуется скоростью накопления дозы и может увеличиваться или уменьшаться во времени. Ее единица в системе СИ – грей в секунду. Это такая мощность поглощенной дозы излучения, при которой за 1 с в веществе создается доза излучения в 1 Гр.

На практике для оценки поглощенной дозы излучения до сих пор широко используют внесистемную единицу мощности поглощенной дозы – рад в час (рад/ч) или рад в секунду (рад/с).

Эквивалентная доза. Это понятие введено для количественного учета неблагоприятного биологического воздействия различных видов излучений. Определяется она по формуле

Дэкв = Q × Д,

где Д – поглощенная доза данного вида излу­чения; Q – коэффициент качества излучения.

Для различных видов иони­зирующих излучений с неизвестным спектральным составом приняты значения Q: рентгеновского и гамма-излучения – Q = 1, бета-излучения – Q = 1, нейтронов с энергией от 0,1 до 10 МэВ – Q = 10, альфа-излучения с энергией менее 10 МэВ – Q = 20. Из приведенных цифр видно, что при одной и той же поглощенной дозе нейтронное и альфа-излучение вызывают соответственно в 10 и в 20 раз больший поражающий эффект. В системе СИ эквивалентная доза измеряется в зивертах (Зв). Один зиверт равен одному грею, деленному на коэффициент качества. При Q = 1 получаем

.

Бэр (биологический эквивалент рентгена) – это внесистемная единица экви­валентной дозы. Поглощенная доза любого излучения в 1 бэр вызывает тот же биологический эффект, что и 1 рентген гамма-излучения. Поскольку коэффициент качества бета и гамма-излучений равен 1, то на местности, загрязненной радиоактивными веществами при внешнем облучении,

1 Зв = 1 Гр; 1 бэр = 1 рад; 1 рад ≈ 1 Р.

Из этого можно сделать вывод, что эквивалентная, поглощенная и экспозиционная дозы для людей, находящихся в средствах защиты на зараженной местности, практически равны.

Мощность эквивалентной дозы – отношение приращения эквивалентной дозы за какой-то интервал времени. Выражается в зивертах в секунду. Поскольку время пребывания человека в поле излучения при допустимых уровнях измеряется, как правило, часами, предпочтительно выражать мощность эквива­лентной дозы в микрозивертах в час.

Согласно заключению Международной комиссии по радиационной защите, вредные эффекты у человека могут наступать при эквивалентных дозах не менее 1,5 Зв/год (150 бэр/год), а случаях кратковременного облучения — при дозах выше 0,5 Зв (50 бэр). Когда облучение превышает некоторый порог, возникает лучевая болезнь.

Мощность эквивалентной дозы, создаваемая естественным излучением (земного и космического происхождения), колеблется в пределах 1,5 – 2 мЗв/год, плюс искусственные источники (медицина, радиоактивные осадки) – от 0,3 до 0,5 мЗв/год. Выходит, что человек в год получает от 2 до 3 мЗв. Эти цифры примерные и зависят от конкретных условий. По другим источникам, они выше и доходят до 5 мЗв/год.

Экспозиционная доза – мера ионизационного действия фотонного излучения, определяемая по ионизации воздуха в условиях электронного равновесия.

В системе СИ единицей экспозиционной дозы является один кулон на килограмм (Кл/кг). Внесистемная единица – рентген (Р),

1 Р =2,58×104 Кл/кг.

Для удобства в работе при пересчете число­вых значений экспозиционной дозы из одной системы единиц в другую обычно пользуются таблицами, имеющимися в справочной литературе.

Мощность экспозиционной дозы – приращение экспозиционной дозы в единицу времени. Ее единица в системе СИ – ампер на килограмм (А/кг). Однако в переходный период можно пользоваться внесистемной единицей – рентген в секунду (Р/с),

1Р/с= 2,58×10-4 А/кг.

Надо помнить, что после 1 января 1990 г. не рекомендуется вообще пользоваться понятием экспозиционной дозы и ее мощности. Поэтому во время переходного периода эти величины следует указывать не в единицах СИ (Кл/кг, А/кг), а во внесистемных единицах – рентгенах и рентгенах в секунду.

При коэффициенте качества, равном единице,

1 Зв = 1 Гр ≈ 100 рад ≈ 100 бэр ≈ 100Р.

Производные единицы зиверта – миллизиверт (м3в) и микрозиверт (мкЗв):

1мЗв= 10-3 Зв;

1мкЗв=10-6 Зв.

Источники и особенности радиоактивных загрязнений. Классификация источников радиоактивных загрязнений

 

Радиоактивное загрязнение происходит по трем причинам: в результате ядерного взрыва, аварии на АЭС или другой ядерной энергетической установке, а также как следствие безответственного хранения и халатного обращения с радиоактивными препара­тами в медицине, научных учреждениях и промышленности. Радиоактивному загрязнению подвергается все: местность, растительность, люди, животные, здания и сооружения, транспорт и техника, приборы и оборудование, продукты питания, фураж и вода. Заражаются как наружные поверхности, так и все то, что находится внутри жилых и производственных помещений. Особенно опасно загрязнение пищеблоков, медицинских учреждений, пред­приятий пищевой промышленности.

Наиболее крупные радиоактивные частицы оседают на землю, а затем колесами транспорта, сельскохозяйственной техники, на ногах людей и животных переносятся с одного места на другое, расширяя тем самым зону заражения. Частицы поменьше в виде пыли разносятся потоками воздуха во все мыслимые и немыслимые места: в квартиры, на чердаки, в подвалы, склады, дворовые постройки, кабины машин, уличные туалеты и т.д. Частицы еще более мелкие в виде аэрозолей витают в воздухе, а следовательно, попадают в органы дыхания человека и животных. Удалить, убрать эти частицы чрезвычайно трудно, вот почему они представляют довольно серьезную опасность.

Идеально ровных поверхностей практически не существует. Поэтому радиоактивные частицы, оседая на поверхности, проникают в щели, трещины, выемки, различные поры. Возьмем шиферные крыши, кирпичные стены, асфальтовые покрытия – все это прекрасно воспринимает, как бы впитывает в себя эту зараженность. Поры могут быть чрезвычайно мелкими, измеряться микронами, но в них проникают как твердые, так и жидкие частицы.

Радиоактивное загрязнение за счет пор и проникновения радионуклидов вглубь материала было особенно характерно для радиоактивных частиц при ава­рии в Чернобыле. По мере увеличения времени, в течение которого длится загрязнение, все возрастающий процесс глубинного загрязнения требует значительных затрат и особых способов дезактивации.

Дождь, работа червей, муравьев увеличивают проникновение радионуклидов в почву до 30 см. Значительное количество радиоактив­ных частиц попадает в воду непосредственно при оседании или смы­вается паводковыми водами, дождями в реку, водохранилище, озеро, пруд. Но и здесь наиболее крупные пылинки оседают на дно, а более легкие уносятся токами воды вниз по течению, хотя и теряя плотность заражения, но в тоже время разнося его все дальше и дальше.

Внешняя поверхность здания или сооружения заражается тоже не одинаково. Прежде всего это зависит от того, какая она: горизонтальная, наклонная или вертикальная. Конечно, на горизонтальной поверхности зараженность будет выше, и по мере увеличения угла до 90° происходит ее снижение.

При авариях на АЭС наиболее сильному загрязнению подвергаются прилегающие к объекту территории. По мере удаления мощность дозы (МД) радиоактивного загрязнения падает. Однако после событий 26 апреля 1986 г. в Чернобыле мельчайшие частицы (радионуклиды) пересекали границы Польши, Швеции, Финляндии, Болгарии, Румынии, Венгрии и других стран. Наибольший уровень загрязненности отмечался в Швеции и Польше.

Значительное ухудшение радиационной обстановки происходит за счет ветрового переноса радиоактивных веществ, а также в результате перемещения людей и техники. Происходит так называемое вторичное загрязнение. На чистую местность на колесах машин, гусеницах тракторов, ногах людей, животных переносятся более высокоактивные частицы. Вторичное заражение получают самосвалы, бульдозеры, погрузчики – вся та техника, которая была задействована на снятии и перевозке зараженного грунта. Опыт Чернобыля показал, что один и тот же объект может за счет вторичных процессов загрязняться несколько раз. При пожаре леса радионуклиды превращаются в дым и золу, загрязняя воздух и поверхность земли. Если затопить печь загрязненными дровами, то на многие годы дымоход станет радиоактивным, да еще практически не поддающимся дезактивации.

Пыль – один из трудных и опасных врагов при борьбе с радиоактивным загрязнением. Она поднимается сильным ветром, образуется при движении наземного транспорта, особенно по проселочным дорогам, при снятии загрязненного грунта, взлете и посадке вертолетов. Ветер разносит радионуклиды на большие расстояния, заражая все новые и новые территории.

Одной из важнейших составляющих радиационной безопасности является ликвидация или минимизация последствий радиоактивных (РА) загрязнений от различных источников. За прошедшие 100 лет с момента начала работы с радиоактивными веществами число источников РА загрязнений значительно увеличилось.

 
 

В зависимости от условий образования таких веществ и последствий их воздействия на окружающую среду источники РА загрязнений можно классифицировать на производственные, аварийные и связанные с наличием арсенала ядерных боеприпасов (рис. 17). Производственные РА загрязнения возникают на предприятиях атомной энергетики, при снятии с эксплуатации отработавших ядерных энергетических установок (ЯЭУ), а аварийные могут быть локальными и массовыми. Таким образом, возможны пять различных вариантов РА загрязнения объектов, каждый из которых имеет свои особенности. Рассмотрим их более подробно.

 
 

К производственным относятся РА загрязнения, связанные с эксплуатацией ЯЭУ и получением ядерного топлива, с транспортировкой и захоронением РА отходов. В последнее десятилетие возникла новая отрасль производственной дезактивации в связи с ликвидацией выработавших свой ресурс реакторов. В течение ближайших тридцати лет более 350 реакторов должны быть сняты с эксплуатации, подвергнуты демонтажу и дезактивации. Ежегодно образуется огромное количество радиоак­тивных отходов – от 100 до 460 м3 (что примерно эквивалентно емкости двадцати пяти двадцатитонных железнодорожных вагонов).

Аварии создают чрезвычайные ситуации и требуют принятия незамедлительных и действенных мер по ликвидации их последствий. Остановимся более подробно на особенностях аварийных РА загрязнений, которые могут быть локальными и массовыми.

Массовыми следует считать такие загрязнения, которые опасны для населения, требуют частичной или полной его эвакуации.

Массовые загрязнения могут быть вызваны захоронением РВ без соблюдения мер предосторожности, правил радиационной безопасности. На заре атомного века огромное количество РА отходов закапывалось или просто сбрасывалось в водоемы.

Сброс радиоактивных отходов в реку Теча на Урале привел к загрязнению пойменных участков местности и донных отложений. Подобные явления происходят и на морских акваториях. Так, на Дальнем Востоке в прибрежных морях активность затопленных твердых отходов более 6 кКи, а жидких отходов слито свыше 12 кКи.

Массовые РА загрязнения могут возникнуть при авариях на космических объектах, содержащих ядерные материалы, несгоревшие фрагменты реакторов или изотопных батарей. Они способны распространяться на большие территории, охватывая континенты. Так, еще в 1964 г. произошла авария спутника США, и 70% плутония-238 выпало в Южном полушарии. Авария советского спутника привела к незначительному заражению части тер­ритории Канады. Глубокий вакуум и большой суточный перепад температур создают пред­посылки для РА загрязнения самих космических аппаратов.

Локальные загрязнения обычно не распространяются за пределы административного образования (префектуры, района, квартала), промышленного или другого объекта (здания, помеще­ния, свалки, отсека подводной лодки, надводного корабля). Обеззараживаются они обычно с привлечением местных средств. Эвакуация жителей района, населенного пункта в таких случаях не требуется. В свою очередь локальные загрязнения могут быть точечными, площадными и объемными.

Точечные возникают в тех случаях, когда РА препарат находится в пробирках или какой-либо другой упаковке.

Площадные распространяются на определенное расстояние от источника. Например, в результате аварии радиотерапевтической установки в 1987 г. в г. Гояния (Бразилия) 19,26 граммов порошка, содержащего радионуклиды цезия, попали в больничные помещения и были разнесены на большие расстояния от больницы. В 1994 г. в Омске на свалке был обнаружен шлак с радионуклидами цезия, который попал туда после переплавки металлолома, содержащего радиоактивный препарат. Помимо печи для переплавки, радиоактивному загрязнению подверглись при вывозе шлака трасса и кузова автомобилей.

Площадные РА загрязнения возникают в населенных пунктах, причем при обстоятельствах, не поддающихся прогнозированию. Так, в 1996 г. ядерные контрабандисты похитили с Игналинской АЭС (Литва) 100 кг урана и пытались перевезти его в обыкновенном такси. Со склада асфальтобетонного завода в поселке Прибрежный около Калининграда пропали цилиндрические контейнеры с высокоактивными веществами, но их удалось вовремя обнаружить.

РА загрязнения воздуха и водоемов относятся к объемным. Так, в октябре 1995 г. на АЭС у г. Картпул в Великобритании возник пожар, который сопровождался выбросом охлаждающего газа и утечкой радиации, к счастью, незначительной.

РА загрязнения происходят в результате наземных и подземных взрывов ядерных боеприпасов. В течение 1945 – 1989 гг. в атмосфере было проведено 397 испытательных ядерных взрывов. Некоторая часть радионуклидов (РН) циркулирует в околоземном пространстве и сегодня, но доза их незначительна – не превышает 1% от естественного фона.

Вместе с тем следует напомнить, что в мире было проведено огромное количество испытательных ядерных взрывов. Например, США взорвали 1054 устройства, СССР – 715, Франция – 196 (последний – 28 января 1997 г.), Великобритания – 45, Китай – 45 (после­дний – 29 июля 1996 г.). В мае 1998 г. сначала Индия, а потом и Пакистан произвели по 5 подземных ядерных взрывов. По оценке ученых, они уже сегодня могут иметь по 10 атомных бомб. Не отстает и Израиль. Как полагают, он уже имеет до 100 бомб. Но самое пе­чальное то, что эти страны не подписывают договор о нераспространении ядерного оружия (т.е. о его запрещении). Надо учитывать, что ликвидация части ядерного арсенала, которая проводится в соответствии с международными соглашениями, также связана с возможностью РА загрязнений.

Перечисленные примеры убедительно свидетельствуют, что источники радиоактивных загрязнений не являются лишь отечественным «национальным достоянием»: они не име­ют границ, т.е. носят «интернациональный» характер.

Следует предостеречь от крайностей в оценке радиационной опасности. С одной стороны, нельзя ею пренебрегать, а с другой – не следует преувеличивать ее опасность (впадать в радиофобию). Только разумное и грамотное отношение к специфике РА загрязнений с учетом возможных последствий может обеспечить надлежащее выполнение требований радиационной безопасности.




Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 3534; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.026 сек.