Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция №18. Этим методом некоторые классы задач можно решать проще и эффективнее, чем другими методами

 

Этим методом некоторые классы задач можно решать проще и эффективнее, чем другими методами. Для рассмотрения основ метода напомним основные положения функции комплексного переменного.

Функцией F(z) комплексного переменного z=x+iy называется функция F(z) = M+jN где M = M (x, y), N = N (x, y) – функции двух действительных переменных. Необходимым и достаточным условием, чтобы F(z) была аналитической функцией комплексного переменного z, является выполнение соотношения Коши - Римана

; .

При выполнении этих условий F(z) имеет производную d/dz независимую от направления интегрирования в области z, а функции M (x, y) и N (x, y) являются гармоническими, т.е. удовлетворяют условию Лапласа

DM = DN = 0.

Рассмотрим плоский несжимаемый поток фильтрационной жидкости.

Компоненты скорости этого потока:

, ,

 

 

удовлетворяют уравнению неразрывности . Из этого уравнения следует, что

;

,

а во-вторых, что существует некоторая функция Y(х, у) такая, что

, и .

Значит , а и условия Коши-Римана выполняются. В этом случае функции Ф и Y образуют функцию комплексной переменной, называемую функцией течения или комплексным потенциалом

F(z) = Ф (х, у) + jY(x, y),

где: Y(x, y) – называют функцией тока. Раскроем ее физический смысл.

На плоскости z рассмотрим отрезок линии тока , т.к. вектор скорости совпадает с направлением касательной и ds можно записать:

или ,

 

- полный дифференциал функции Y(x, y).

Отсюда: dY = 0 и Y = const.

Можно показать, что эквипотенциали и линии тока взаимноортогональны в любой точке М (рис 18.1). является касательной к эквипотенциали Ф = С1, но так как вдоль нее приращение потенциала нет  
Это означает, что Y=const. описывает уравнение линий тока, изменяя константу, получим полное семейство линий.

 

Рис. 18.1


D Ф = , то ,

аналогично вдоль линии тока Y = С2 имеем

.

Рассмотрим произведение

(по условию Коши-Римана и ), а это может иметь место, если .

Определим физический смысл функции тока Y. Возьмем две линии тока и соединим их линией АВ (рис.18.2 и 18.3). Проекция вектора : nx = cos (n, x) = (sin q), ny = cos q.

 
 

Найдем расход через сечение АВ (считая h = 1):

 

 

таким образом, расход между двумя линиями тока равен разности значений функции тока на этих линиях.

Найдем производную , зависящую от направления дифференцирования. Выберем направление дифференцирования в плоскости z, совпадающее с направлением оси х

,

т.е. производная комплексной функции равна значению комплексно-сопряженной скорости с обратным знаком. Модуль ее производной равен модулю скорости движения жидкости.


Найдем закон движения частицы жидкости вдоль линии тока Y-const. Пусть dx и dy проекции элемента пути dS вдоль линии тока. Можно записать:

где: m – пористость, или

,

по dx – jdy = dz*, значит

или , откуда .

Отметим в заключение обзора, что комплексные потенциалы потоков F(z)=Ф(х, у)+j Y(x, y) можно суммировать по принципу суперпозиции, т.к. функции Ф и Y удовлетворяют уравнению Лапласа.

2. Рассмотрим примеры применения функций комплексного переменного для решения простейших задач на плоскости.

а) Прямолинейно-параллельный поток.

Для прямолинейно-параллельного потока комплексным потенциалом является функция F(z)=az+b, где а и b – комплексные постоянные а=а1+jа2, b=b1+jb2. (Для плоских задач функция получается заменой в реальном потенциале действительного аргумента х или rна комплексную переменную z. Вид функции при этом сохраняется. Для плоскопараллельного потока, например, потенциал тока

,

а ее комплексный аналог F= аz+b; для точечного стока , а комплексный потенциал и т.д.).

Разделим в действительную и мнимую части

.

Эквипотенциали представляют прямые линии с угловым коэффициентом , а линии тока также прямые с угловым коэффициентом . Они взаимно перпендикулярны, т.к.

.

Компоненты скорости фильтрации равны соответственно

, и ,

т.е. движение происходит с постоянной скоростью. Это следует и из другого ее определения:

.

б) Точечный сток, расположенный в начале координат, имеет комплексный потенциал , где q – расход на единицу толщины пласта (при q>0 – источник, q<0 – сток). Разделим действительную и мнимую части, используя полярную систему координат:

.

Откуда следует, что .

Из выражений следует, что эквипотенциали представляют собой концентричные окружности r = const, а линии тока – радиальные прямые с Y=const (рис. 18.4). Модуль скорости фильтрации:

.

Из этой формулы следует, что в начале координат F(z) имеет особую точку и поэтому не будет аналитической (производная обращается в бесконечность).

Рис. 18.4.
Если сток расположен в точке с комплексной координатой z0 =x0+jy0, то комплексный потенциал имеет вид:

.

При переходе к полярным координатам полагают z-z0 = rejj. Здесь особой точкой будет точка z0.

в) Работа в пласте равно дебитного стока и источника. Поместим их в точки х = а, х = -а, у = 0.

Комплексный потенциал стока в этом случае , а источника .

Суммарный потенциал по принципу суперпозиции

.

Выведем уравнения эквипотенциалей и линий тока. Возьмем произвольную точку z = x + jy (точка М) на плоскости течения (рис. 18.5). Обозначим

и .

 

 

Рис. 18.5.
.

После чего уравнения эквипотенциалей и линий тока запишутся:

или , .

В уравнении эквипотенциальной линии перейдем к декартовым координатам. , ,

тогда Þ Þ

Þ Þ

Þ , где с¹1.

Прибавим и вычтем выражение , чтобы получить квадрат разности:

Þ.

Это уравнение окружности с центром в точке х0 = , у0 = 0 и радиусом . Изменяя постоянную константу С от нуля до 1, получим семейство окружностей в правой полуплоскости, не концентричных со скважиной-стоком, с увеличивающимися радиусами. Константа С = 1 соответствует окружности с бесконечным радиусом, т.е. оси у. В левой полуплоскости при х<0 картина зеркальная. Для нее полагают 1<c<¥.

Преобразуем аналогичным образом уравнение линий тока (рис.18.5) ; ;

.

Последнее выражение приводится к виду Þ

Þ Þ .

Таким образом, линии тока также окружности, но с центром на оси у (х0 = 0, y0 = ) и радиусами , проходящие через сток (х = а) и источник (х = - а).

В заключение найдем скорости фильтрации, через значения производной комплексной функции

.

Если рассмотреть только правую половину плоскости течения , то комплексный потенциал пары сток - источник описывает приток к одному стоку, расположенному в точке х = а, у = 0 вблизи прямоугольного контура питания, которым является ось у (т.е. эквивалентный результат метода изображения стока вблизи прямоугольного контура).

При помощи принципа суперпозиции с использованием функции комплексного переменного можно решать различные задачи. Например, можно показать, что комплексный потенциал скважины, эксцентрично расположенный в круговом пласте с эксцентриситетом d:

,

а комплексный потенциал кольцевой батареи из m скважин радиуса R1 в круговом пласте радиуса Rk

.

 

Раздел 4. Установившееся движение упругой жидкости и газа в пористой среде

 

<== предыдущая лекция | следующая лекция ==>
Лекция № 17. Приток жидкости к несовершенным скважинам | Лекция № 19
Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 534; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.034 сек.