Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Фактура

Тени

Прозрачность

Модели закраски

Существует три основных способа закраски многоугольников: однотонная закраска, закраска с интерполяцией интенсивности и закраска с интерполяцией векторов нормали.

При однотонной закраске предполагается, что и источник света и наблюдатель находятся в бесконечности, поэтому произведения L·N и R·V постоянны. На изображении могут быть хорошо заметны резкие перепады интенсивности между различно закрашенными многоугольниками. Если многоугольники представляют собой результат аппроксимации криволинейной поверхности, то изображение недостаточно реалистично.

В методе закраски с интерполяцией интенсивности (метод Гуро) нормали в вершинах многоугольников вычисляются как результат усреднения нормалей ко всем полигональным граням, которым принадлежит данная вершина. Используя значения нормалей, вычисляют интенсивности в вершинах по той или иной модели освещения. Эти значения затем используются для билинейной интерполяции: для данной строки сканирования вначале находят значения интенсивностей на ребрах, а затем линейно интерполируют между ними при закраске вдоль строки.

В методе закраски с интерполяцией нормали (метод Фонга) значение нормали вдоль строки интерполируется между значениями нормалей на ребрах для данной строки. Значения нормалей на ребрах получается как результат интерполирования между вершинами. Значения же нормалей в вершинах являются результатом усреднения, как и выше рассмотренном методе. Значение нормали для каждого из пикселов строки используется для вычислений по той или иной модели освещения.

В простейшей модели прозрачности преломление не учитывается. При расчетах по такой модели могут использоваться любые алгоритмы удаления невидимых поверхностей, учитывающие порядок расположения многоугольников. При использовании построчных алгоритмов если передний многоугольник оказывается прозрачным, то определяется ближайший из оставшихся, внутри которых находится строка сканирования. Суммарная закраска определяется следующим образом:

I = k·Iб + (1-k)·Iд,

 

где 0 £ k £ 1 - характеризует прозрачность ближнего многоугольника. Если k = 1, то он непрозрачен. Если же k = 0, то ближний многоугольник полностью прозрачен; Iб - интенсивность для пиксела ближнего многоугольника, Iд - дальнего.

Простой способ определения объектов, попавших в тень и, следовательно, неосвещенных, аналогичен алгоритму удаления невидимых поверхностей: те объекты, которые невидимы из источника освещения, но видимы из точки зрения находятся в тени. На первом шаге в алгоритме с учетом тени определяются все многоугольники, видимые из точки освещения. Затем выполняется удаление поверхностей невидимых из точки зрения. При выполнении закраски многоугольника проверяется не закрыт ли он многоугольником, видимым из источника освещения. Если да, то в модели освещения учитываются (если надо) все три компоненты - диффузное и зеркальное отражения и рассеянный свет. Если же перекрытия нет, то закрашиваемый многоугольник находится в тени и надо учитывать только рассеянный свет.

Решение в лоб - представление в виде соответствующего (очень большого) количества многоугольников мало приемлемо. Более практичное решение - "натягивание" массива узора, полученного в результате оцифровки изображения реальной поверхности на раскрашиваемую. При этом значения из массива узора используются для масштабирования диффузной компоненты в модели освещения.

Для устранения лестничного эффекта должны учитываться все элементы узора, затрагивающие обрабатываемый пиксел изображения.

Такой метод влияет на раскраску поверхности, но оставляет ее гладкой. Неровности могут моделироваться возмущениями нормали поверхности. Другой способ, используемый при синтезе картин - метод фрактальной геометрии.

<== предыдущая лекция | следующая лекция ==>
Механизм диффузного и зеркального отражения света | Работа с двухмерными объектами
Поделиться с друзьями:


Дата добавления: 2014-01-13; Просмотров: 281; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.