Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Культура растительных клеток как источник получения вторичных метаболитов




В будни и праздники Ваш

Растения являются незаменимым источником получения очень многих практически важных веществ. При этом следует подчеркнуть, что промышленное получение некоторых соединений, например, сердечных гликозидов, флавоноидов, кумаринов, эфирных масел достигается только путем выделения их из растительного сырья. Между тем возможности получения так называемых «метаболитов интереса» в достаточном количестве зачастую ограничены. Это связано с сокращением ресурсов некоторых ценных дикорастущих растений, принадлежностью многих лекарственных растений к группам эндемов, редким и исчезающим видам. В связи с этим большой интерес в качестве источника биологически активных веществ представляют культуры растительных клеток.

Вторичный метаболизм культивируемых клеток привлекает всё больше внимания исследователей, это обусловлено, прежде всего перспективностью промышленного использования культивируемых клеток растений для получения соединений специализированного обмена растений. Особую актуальность этот вопрос приобретает в связи с возрастающей остротой экологических проблем. В медицине 25% всех применяемых лекарств содержат соединения растительного происхождения. Если приплюсовать к этому потребности пищевой промышленности, парфюмерии, сельского хозяйства, то становится очевидной необходимость замены плантационного, а тем более дикорастущего сырья на гарантированно получаемую промышленным способом биомассу культивируемых клеток, содержащую необходимые соединения в достаточном количестве.

Как показал почти полувековой опыт исследования вторичных соединений в клеточных культурах растений (с 1940 года), для этого необходимо решение многих фундаментальных проблем биологии культивируемых клеток. Наиболее серьёзной из них является разработка стратегии контроля синтеза вторичных соединений в культивируемых клетках растений. До сих пор неясно, возможна ли разработка единой стратегии или она должна быть специфической для разных классов вторичных соединений, или же индивидуальной для каждого конкретного случая.

Культуры растительных клеток могут синтезировать самые разнообразные по химической природе вещества. Среди них эфирные масла, фенольные соединения, алкалоиды, стероиды, терпеноиды и др. Но несмотря на то, что биомасса культивируемых клеток с начала 80-х годов используется в качестве источника экономически важных продуктов, ряд трудностей и нерешенных вопросов сдерживает широкомасштабное применение культивируемых клеток, обусловливает нерентабельность биотехнологических производств многих ценных видов растений. Содержание практически важных вторичных метаболитов в высших растениях определяется активностью их синтеза, эффективностью транспорта и депонирования в органах запаса растения. Все эти признаки определяются генетически, находятся под контролем развития организма и максимально реализуются в оптимальных внешних условиях.

В самом общем смысле культура клеток и тканей – это искусственное in vitro индуцирование делений клеток или выращивание в пересадочной культуре тканей, возникших путём пролиферации клеток изолированных сегментов разных частей растения.

В культуре тканей лекарственных растений можно выделить три главных направления: получение недифференцированной каллусной массы, создание источников генетического разнообразия форм растений, а так же клеточную селекцию и клональное микроразмножение растений. В природе каллусообразование – естественная реакция на повреждение растений. В культуре изолированных тканей при помещении экспланта (т. е. фрагмента ткани или органа) на питательную среду его клетки дедифференцируются, переходят к делению, образуя однородную недифференцированную массу – каллус.

Культуру каллусной ткани можно поддерживать неограниченно долго, периодически разделяя её на трансплантаты и пересаживая её на свежую среду. Каллусы легко образуются на эксплантах из различных органов и частей растений: отрезков стебля, листа, корня, проростков семян, фрагментов паренхимы, тканей клубня, органов цветка, плодов, зародышей и т. д.

Каллусные клетки в культуре in vitro подвержены значительной генетической изменчивости. Изменчивость геномов может приводить к генетическим изменениям у растений-регенерантов, полученных из культуры каллусных клеток, клеточных суспензий или изолированных протопластов. Такие растения получили названия сомаклональных вариантов. Сомаклональные варианты, сохраняя основные свойства прототипа, часто выгодно отличаются от него устойчивостью к болезням, экологическим стрессам, а иногда несколько изменённой биосинтетической способностью и более высокой продуктивностью.

Неотселектированные недифференцированные клетки накапливают, как правило, незначительное, по сравнению с интактным растением, количество веществ специализированного обмена. Только благодаря правильно разработанной стратегии получения высокопроизводительных штаммов к настоящему времени получены культуры тканей, в которых содержание вторичных продуктов достаточно велико, чтобы служить лекарственным сырьем. Однако для многих культур неоднократные попытки различных исследователей определить условия накопления продуктов, характерных для родительских растений, были неудачными. Это касается, в частности, индукции морфинановых алкалоидов в культуре ткани Papaver somniferum, винбластина – в Catharanthus roseus, хинолиновых алкалоидов – в Cinchona ledgeriana, дигоксина – Digitalis lanata и др. Чаще всего в клеточных культурах при длительном культивировании снижается или совсем теряется способность клеток накапливать соединения вторичного метаболизма из-за возникновения малоактивных, но более жизнеспособных вариантов. Снижение биосинтетического потенциала в культуре in vitro происходит из-за подавления дифференциации клеток и их специализации, т.е. в результате потери способности к реализации генетической информации, относящейся ко вторичному обмену.

2Регуляция синтеза вторичных метаблитов к культуре клеток

В организме растения синтез метаболитов, их транспорт и отложение в запас находятся под строгим контролем развития. Часто эти события не только разведены во времени, но и происходят в разных органах растения. Клетка вне организма обычно не транспортирует метаболиты в соседние клетки или в питательную среду, хотя в ряде случаев это явление наблюдается (биосинтез алкалоидов в клеточных культурах мака). На выход вторичных продуктов в культурах растительных клеток влияют многие факторы, однако все способы регуляции вторичного метаболизма в культуре in vitro можно разделить на две группы: физиологическая и генетическая регуляции синтеза вторичных метаболитов.

Подбор физических и химических условий культивирования является наиболее простым и часто применяемым подходом для повышения продуктивности. В основе физиологического регулирования процессов вторичного синтеза лежит изучение влияния факторов культивирования на рост и метаболизм клеток. Большое внимание уделяется таким факторам культивирования, как регуляторы роста, минеральные вещества, витамины, сахара, свет, аэрация, температура, а также иммобилизация клеток и обработка элиситорами. Во многих случаях эти работы привели к успеху, однако они выполняются эмпирически и поэтому длительны и трудоемки. К тому же следует оговориться, что несмотря на эффективность повышения уровня биосинтеза физиологическими методами, добиться количественно значимых изменений в дедифференцированных клеточных культурах, сопоставимых с уровнем в интактном растении, лишь за некоторым исключением, не удается. Стимулирование же синтеза элиситорами носит, к сожалению, временный характер. (Современный уровень развития науки привёл к появлению нового метода защиты растений, который основан на повышении иммунного потенциала растений, а не на уничтожении патогенов, как это происходит в случае использования пестицидов. Вещества, которые побуждают защитные ответы у растений, называются элиситорами (раньше их называли индукторами). Первый биогенный элиситор был получен в 1968 году, с тех пор их количество ежегодно увеличи­вается. Биогенные элиситоры применяются в очень малых, безвред­ных количествах. Растению как бы делают прививку против болезней, в результате повышается его устойчивость.)

Более эффективной в этом плане является генетическая регуляция синтеза вторичного метаболизма в системе in vitro. С использованием экспериментального мутагенеза стало возможным получение довольно продуктивных штаммов. Следует отметить, что метод индуцированного мутагенеза носит также эмпирический характер и не менее трудоемок, чем физиологические способы регуляции вторичного метаболизма. Ряд перспективных культур был получен в результате генетической трансформации и других генно-инженерных манипуляций. Особенно следует отметить трансформанты, полученные с помощью плазмид агробактерий (Agrobacterium rhizogenes, A. tumefaciens), в частности «бородчатых корней», продуктивность которых оказалась достаточно высокой. Поскольку одной из основных причин снижения уровня биосинтеза в культурах in vitro является дедифференциация ткани, то один из путей повышения синтеза вторичных соединений в клеточных культурах связан с дифференцировкой ткани и органогенезом.

Известно, что физиологическое действие условий in vitro приводит к генетической гетерогенности системы. Речь идет о так называемой сомаклональной изменчивости, которая возникает при длительном культивировании. На генетической изменчивости клеток в культуре in vitro основана селекция штаммов, обеспечивающая большой выход ценных продуктов вторичного метаболизма растительных клеток. При клонировании суспензионной культуры клеток паслена были выделены линии, накапливающие больше 3 % соланидина, получен штамм клеток руты душистой, содержащей в 20 раз больше алкалоида рутакридона по сравнению с растением.




Поделиться с друзьями:


Дата добавления: 2015-07-13; Просмотров: 1665; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.