Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Теорема о циркуляции вектора магнитной индукции в стационарном случае. Вихревой характер магнитного поля




Емкость уединенного проводника. Система проводников. Конденсаторы и их емкость. Общая задача электростатики. Понятие о методе изображений для решения некоторых электростатических задач.

Уединенным называется проводник, расположенный так далеко от других проводников, что их влиянием на распределение зарядов по его поверхности можно пренебречь.

Чтобы зарядить этот проводник, например, удалить с него некоторое количество электронов на бесконечно большое расстояние от проводника, необходимо совершить работу.

Как уже обсуждалось, это приводит к перераспределению электронов, в результате которого поля внутри проводника нет, полученный заряд располагается на поверхности, которая, как и объем, эквипотенциальна.

Опыт показывает, что величина потенциала проводника всегда пропорциональна полученному заряду, т.е. во сколько раз изменяется заряд, во столько же раз изменяется и потенциал проводника.

Этот коэффициент пропорциональности называется электрической емкостью уединенного проводника и численно равен заряду, который нужно сообщить проводнику, чтобы изменить его потенциал на 1 В.

[С]=1 Кл/В=1Ф (Фарада)

Электрическая емкость – термин, исторически возникший из-за неправильного представления, что получение заряда проводником эквивалентно заполнению его некоторой заряженной жидкостью.

Рассчитаем емкость уединенного шарика радиусом R.

Пусть заряд шарика q и если поблизости нет других проводников, то этот заряд равномерно распределен по поверхности. В этом случае напряженность поля вблизи поверхности:

, ,

Поскольку поле потенциальное, то интегрируем вдоль радиуса-вектора:

. Отсюда:

Следовательно, емкость сферического проводника зависит только от его радиуса и не зависит от того сплошной он или полый, а также от того из какого проводник вещества.

Емкость - однозначная «геометрическая» характеристика проводника, так как зависит только от его формы, размеров, а также от среды, в которой находится проводник.

Емкость системы двух или нескольких проводников называется взаимной так как при перенесении заряда с одного проводника на другой изменяется потенциал каждого проводника и между ними возникает разность потенциалов и электрическое поле.

Взаимной емкостью двух проводников называется величина, численно равная заряду, который нужно перенести с одного проводника на другой, чтобы разность потенциалов между ними изменилась на 1В. ,

где U – напряжение равное при отсутствии движения зарядов разности потенциалов между проводниками.

Конденсатором называют систему двух или нескольких проводников, электроемкость которой не зависит от наличия других проводников, находящихся вне этой системы.

По форме проводников, образующих конденсатор, их называют плоскими, сферическими, цилиндрическими.

Плоский конденсатор – это две параллельные металлические пластины (обкладки), расположенные на расстоянии значительно меньшем, чем линейные размеры пластин.

Если считать пластины плоскостями с одинаковой по модулю поверхностной плотностью заряда, то напряженности поля каждой пластины равны по модулю. Тогда вне конденсатора результирующее поле равно нулю, а между обкладками поле однородное и его напряженность равна Ер=2Е (рис.33).

В реальном конденсаторе поле имеет такой характер лишь в средней области, а у краев конденсатора картина поля меняется, т.е. возникают так называемые краевые эффекты (рис.34).

РИС.33 РИС.34

 

Если расстояние между пластинами существенно меньше размеров пластин, то краевыми эффектами можно пренебречь.

,

Разность потенциалов между пластинами равна:

,

На практике используется последовательное и параллельное соединение конденсаторов. В первом случае конденсаторы включаются в цепь друг за другом и соединяются разноименно заряженные обкладки (рис.35).

 

РИС. 35 РИС.36

 

Напряжение (разность потенциалов) на всей батарее равно сумме напряжений на каждом конденсаторе, а заряды всех конденсаторов равны.

,

Емкость батареи последовательно соединенных конденсаторов - это емкость такого конденсатора, которым, при этих же напряжении и заряде, можно заменить всю батарею.

,

При параллельном подключении конденсаторов (рис.36) соединяются между собой одноименно заряженные обкладки.

В этом случае суммарный заряд батареи равен сумме зарядов каждого конденсатора, а напряжение для всех одинаково:

,

В этом случае емкость всей батареи можно заменить конденсатором с емкостью:

,

Метод изображения состоит в определенном (угадывании) поля, создаваемого зарядами в присутствии проводников, путем введения вместо этих проводников фиктивных зарядов qi (Рис. 61).

Рис. 61

 

 

Результирующее поле оставш. Истинных и фиктивных. зар. должно быть таким, чтобы его эквипотенциальные поверхности совпадали с поверхностями проводников jповi, действие которых заменено фиктивными зарядами.

Можно сказать, что метод изображений по существу основан на подгонке потенциала под граничные условия: мы стараемся найти другую задачу (конфигурацию зарядов), у которой конфигурация поля в интересующей нас части пространства была бы той же. Если это удается сделать с помощью достаточно простых конфигураций, то метод изображений оказывается весьма эффективным.

Примеры

1) Точечный заряд и проводящая плоскость

Когда точечный заряд q находится около безграничной проводящей плоскости (рис. 62, а) действие индуцированных зарядов на плоскости заменяем фиктивным зарядом q = -q. Поле этой системы известно (его линии вектора Е показаны на рис. 62, б).

Совместим со средней эквипотенциальной поверхностью (ее потенциал = 0) проводящую плоскость и уберем заряд -q. Согласно теореме единственности поле в верхнем полупространстве останется прежним. Действительно, на проводящей плоскости и всюду в бесконечности = 0, точечный же заряд q можно рассматривать как предельный случай малого сферического проводника, радиус которого стремится: к нулю, а потенциал — к бесконечности. Таким образом, в верхнем полупространстве граничные условия для потенциала остались теми же, стало быть, тем же осталось и поле в этой области (рис. 62, в). Рис.62

а) б) в)

Итак, в рассматриваемом случае поле отлично от нуля только в верхнем полупространстве, и для вычисления этого поля достаточно ввести фиктивный заряд-изображение q' = -q, противоположный по знаку заряду q, поместив его по другую сторону проводящей плоскости на таком же расстоянии от нее, что и заряд q. Фиктивный заряд q создает в верхнем полупространстве точно такое же поле, как и индуцированные заряды на плоскости. Именно это подразумевают, когда говорят, что фиктивный заряд заменяет собой «действие» всех индуцированных зарядов. Надо только иметь в виду, что «действие» фиктивного заряда распространяется лишь на то полупространство, в котором находится действительный заряд q. В другом полупространстве поле отсутствует.

2) 3) Рис. 63

 

Сила взаимод. между q и зарядом на плоскости будет равна силе взаимодействия q и q’ (Рис. 63)

 


Теорема о циркуляции вектора магнитной индукции поля постоянных токов в вакууме может быть доказана на основе закона Био-Савара, что, в общем случае, достаточно сложно.

- циркуляция вектора магнитной индукции по любому замкнутому контуру равна произведению магнитной постоянной на алгебраическую сумму токов охватываемых этим контуром.

Ток считается положительным, если его направление связано с направлением обхода по контуру правилом правого винта

 

РИС.76 РИС.77

 

Если ток распределен по объему, в котором расположен контур, то полный ток охваченный контуром , где интеграл берется по произвольной поверхности натянутой на контур, плотность тока соответствует токе расположения площадки . В этом случае теорема о циркуляции:

 

Теорема о циркуляции позволяет достаточно просто рассчитать индукцию магнитного по известному распределению токов, если можно выбрать контур, вдоль которого модуль вектора магнитной индукции и направление постоянно.

Поле внутри соленоида тем более однородно, чем больше длина соленоида по сравнению с его диаметром. Для «бесконечного» соленоида снаружи вблизи его поверхности магнитного поля нет и можно выбрать контур, лишь часть которого совпадает с линией магнитной индукции

Ток охватываемый контуром , где N – число витков с током, охваченных контуром. Тогда:

Следовательно, индукцию магнитного поля внутри «бесконечного» соленоида можно рассчитать по формуле

, где n – число витков соленоида на единицу длины.

Факт, что циркуляция вектора магнитной индукции по замкнутому контуру не равна нулю, означает, что, в отличие от электростатического, магнитное поле – не потенциально.

Используем теорему Стокса и сравним это выражение с записью теоремы о циркуляции вектора магнитной индукции в случае непрерывного распределения тока в некотором объеме.

- дифференциальная (локальная) форма теоремы о циркуляции. Математическая констатация того факта, что линии вектора магнитной индукции замкнуты вокруг вектора плотности тока по правилу правого буравчика и поэтому магнитное поле называют вихревым или соленоидальным.

Используем, что или с помощью определителя:

, .





Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 972; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.038 сек.