КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Задачи 4,5,6 ИНДЕКСЫ 1 страница
Для выполнения этих задач изучите тему «Индексы». Обратите внимание на то, что одной из задач индексного метода является соизмерение во времени двух совокупностей, состоящих из элементов, неподдающихся непосредственно суммированию. Эту задачу выполняют агрегатные индексы качественных и количественных показателей. К агрегатным индексам качественных показателей относятся: Индекс цен Где р - цена на товар; q – количество проданного товара; pq – товарооборот. Индекс себестоимости где z - себестоимость единицы продукции; q- количество продукции; zq - затраты на производство продукции. К индексам количественных показателей относятся: Индекс физического объема товарооборота
Индекс физического объема продукции [1, стр. 206-232]. Вторая задача индексного метода – выявление влияния отдельных факторов на изменение сложного экономического явления. Для этой цели строятся системы взаимосвязанных индексов:
Система взаимосвязанных индексов
Разность между числителем и знаменателем индекса затрат Разность между числителем и знаменателем индекса себестоимости Разность между числителем и знаменателем индекса физического объема продукции Система взаимосвязанных индексов 1 Себестоимость и объем продукции завода характеризуется следующими данными (см. табл. 8). Таблица 8 – Исходные данные по изделиям
На основании приведенных данных вычислите: а) общий индекс затрат на всю продукцию, б) агрегатный индекс себестоимости, в) агрегатный индекс физического объема продукции Определите изменение затрат на производство продукции за счет изменения количества выпускаемой продукции и себестоимости. Поясните экономический смысл исчисленных индексов. Решение Для вычисления индексов строим расчетную таблицу (см. табл.9) Таблица 9 – Промежуточные расчеты
Затраты на продукцию в отчетном периоде по сравнению с базисным возросли в среднем на 4% или 2,62 тыс. руб. Агрегатный индекс себестоимости определяется по формуле
Себестоимость продукции (изделий А и Б) в отчетном периоде по сравнению в базисным снизилась в среднем на 7,1%. Вследствие этого затраты на производство продукции снизились на 4,98 тыс. руб. или можно сказать, что предприятие получило экономию от снижения себестоимости 4,98 тыс. руб. Агрегатный индекс физического объема продукции определяется по формуле:
Количество произведении в отчетном периоде по сравнению с базисным увеличилось в среднем на 12%. Вследствие этого затраты на производство продукции увеличились на 7,6 тыс. руб.
2,61 тыс. руб.=(-4,98 тыс.руб)+7,6 тыс.руб. Однако для построения агрегатных индексов не всегда есть данные. Поэтому, если имеются данные об индивидуальных индексах, то в этом случае вместо агрегатных индексов используются средние индексы. Для построения индексов качественных показателей применяется средний гармонический индекс цен:
Индекс себестоимости:
Для количественных показателей строится средний арифметический индекс физического объема товарооборота
2 Имеются следующие данные (см. табл. 10) Таблица 10 - Данные по факторам товарооборота за два квартала
Вычислите средний гармонический индекс цен. Решение: Средний гармонический индекс цен определяется по формуле:
Цены в отчетном периоде по сравнению с базисным снизились в среднем на 2%. 3 Имеются следующие данные (см. табл. 11): Таблица 11 - Данные по факторам объема продукции за два периода
Определите средний арифметический индекс физического объема продукции. Решение Средний арифметический индекс физ. Объема определяется по формуле: Физический объем продукции в отчетном периоде по сравнению с базисным увеличился в среднем на 14%. Третьей задачей индексного метода является изучение влияния отдельных факторов на изменение средних показателей во времени. Эта задача решается путем построения системы взаимосвязанных индексов:
По этой схеме строятся все индексы качественных показателей, например индекс себестоимости, индекс цен, индекс трудоемкости и т.д. Построим систему взаимосвязанных индексов для изучения влияния отдельных факторов на изменение средней себестоимости:
Этот индекс показывает изменение средней себестоимости за счет двух факторов: изменения уровня себестоимости единиц продукции на отдельных предприятиях и изменения удельных весов выпуска продукции предприятиями с разным уровнем себестоимости в общем выпуске продукции, т.е. за счет структурных сдвигов. Снижение средней себестоимости единицы продукции, например в отрасли, происходит двумя путями: в результате снижения себестоимости единицы продукции на отдельных предприятиях и за счет увеличения доли выпуска продукции там, где продукция производится с более низкой себестоимостью.
Рассмотрим расчет Имеются следующие данные по двум заводам о выпуске продукции и ее себестоимости (см. табл. 12).
Таблица 12 - Данные по двум заводам о себестоимости продукции по двум периодам
Решение: Для расчета Таблица 13 - Промежуточные расчеты средней себестоимости
Таблица 14 - Сводные показатели общей себестоимости продукции
или Если вычислена структура (см. табл. 15) то индексы себестоимости можно определить также по формулам:
Рассчитаем
Система взаимосвязанных индексов
или
где ФЗП - фонд заработной платы рабочих, к - численность рабочих, з - средняя заработная плата рабочего,
Индекс средней заработной платы переменного состава ( Задача 7. СТАТИСТИЧЕСКОЕ ИЗУЧЕНИЕ ЗАВИСИМОСТЕЙ
По данным о стоимости основных производственных фондов и объеме валовой продукции нужно определить уравнение связи и тесноту связи. Связь предполагается линейной. Принимая для этой связи уравнение прямой линии, определим его параметры на основе метода наименьших квадратов, решив следующую систему линейных уравнений:
Расчеты указанных в системе уравнений сумм произведем в табличной форме.
Таблица 15 Вспомогательные расчеты построения линейной модели
Определим коэффициент эластичности:
Следовательно, с увеличением стоимости основных произведенных фондов на 1 млн. руб. объем валовой продукции уваливается в среднем на 5,6 млн. руб., или с увеличением стоимости основных производственных фондов на 1 % объем валовой продукции увеличивается на 0,69 %. Рассчитаем величину линейного коэффициента корреляции:
Расчет коэффициентов регрессии несколько осложняется, если ряды по исследуемым факторам сгруппированы, а связь криволинейная. Ниже приводятся базовые варианты заданий самостоятельных расчетных работ. Студентам дневной, вечерней, сокращенной формы обучения и второго высшего образования необходимо согласовать номер варианта и числовые исходные данные с преподавателем дисциплины «Статистика». Студенты заочной формы и дистанционного образования должны выполнять вариант, номер которого соответствует двум последним цифрам номера зачетной книжки студента. Для всех студентов, выполняющих задание, предусмотрены консультации преподавателя дисциплины и время на защиту расчетных заданий. ВАРИАНТ 1 Задание 1.1
Задание 1.2 Имеются следующие данные о среднем размере товарных запасов в универмаге по месяцам года, тыс. руб.:
Произведите: 1 сглаживание ряда товарных запасов универмаг методом трехмесячной скользящей средней; 2 выравнивание ряда динамики по прямой. Сделайте выводы о характере общей тенденции изучаемого явления. Задание 1.3
Для выявления затрат времени на обработку деталей рабочими разной квалификации на предприятии была произведена 10% -ая выборка пропорционально численности выделенных групп (внутри типических групп произведен механический отбор). Результаты обследования могут быть представлены следующим образом:
С вероятностью 0,954 определите пределы, в которых находятся средние затраты времени на обработку деталей рабочими. Задание 1.4 Просроченная задолженность по кредитам акционерных обществ (АО) за отчетный период характеризуется следующими данными:
Определите средний процент просроченной задолженности АО. Задание 1.5 Динамика производственных показателей двух предприятий АО характеризуется следующими данными:
Определите: 1 индивидуальные индексы себестоимости и физического объема продукции; 2 общие индексы: затрат на производство продукции, себестоимости продукции, физического объема производства продукции; 3 изменение суммы затрат за счет изменения себестоимости продукции и объема произведенной продукции. Покажите взаимосвязь между исчисленными индексами и сделайте выводы. Задание 1.6
Дата добавления: 2014-12-27; Просмотров: 2236; Нарушение авторских прав?; Мы поможем в написании вашей работы! |