КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Числовые ряды
Пусть дана числовая последовательность Выражение вида При этом числа Суммы конечного числа членов ряда:
называются частичными суммами ряда. Так как число членов ряда бесконечно, то частичные суммы ряда образуют бесконечную последовательность частичных сумм Если все члены ряда положительны, то ряд называется знакоположительным. Ряд называется сходящимся, если предел Ряд: где
Ряд геометрической прогрессии является сходящимся при Свойства сходящихся рядов: 6. Если сходится ряд:
то сходится и ряд и обратно, если сходится второй ряд, то сходится и первый. Другими словами, на сходимость ряда не влияет отбрасывание любого конечного числа его первых членов. 2) Если ряд 7. Если ряды Таким образом, установлено, что сходящиеся ряды можно умножать на число, почленно складывать и вычитать так же, как и конечные суммы. Необходимое и достаточные условия сходимости ряда. При рассмотрении рядов возникают две задачи: 1) исследовать ряд на сходимость и 2) зная, что ряд сходится, найти его сумму. Будем решать в основном первую задачу, имеющую теоретический характер. Приведем необходимое условие сходимости рядов. Если ряд Числовой ряд:
называется гармоническим рядом. Только невыполнение необходимого условия сходимости позволяет делать определённый вывод, а его выполненине, как в данном случае Лекция 42
Дата добавления: 2014-01-07; Просмотров: 332; Нарушение авторских прав?; Мы поможем в написании вашей работы! |