КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Аффинные преобразования
Определение 1: аффинным преобразованием аффинного пространства
Замечание 1: изоморфное отображение векторного пространства
Замечание 2: так как преобразование, ассоциированное с аффинным, является линейным, то оно сохраняет линейную независимость векторов: линейно независимая система векторов отображается также на линейно независимую систему векторов с сохранением коэффициентов. Например, если
и векторы
Поэтому любой базис векторного пространства Теорема 1: при аффинном преобразовании пространства
□ 1) Плоскость 2) Если ассоциированное с аффинным векторное преобразование отображает подпространства
Теорема 2: при аффинном преобразовании пространства
□ 1) Пусть данное аффинное преобразование отображает начало координат 2) По определению координат точки Таким образом
Замечание 3: определить аффинное преобразование можно и по-другому, например: аффинным называется преобразование, отображающее 1) любую прямую также на прямую и 2) сохраняющее простое отношение точек, то есть число
Дата добавления: 2014-01-07; Просмотров: 629; Нарушение авторских прав?; Мы поможем в написании вашей работы! |