Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Турбогенераторы




Турбогенераторы являются основной в мире машиной, вырабатывающей электроэнергию пе­ременного тока. Впервые турбогенераторы трех­фазного тока с цилиндрическим ротором появи­лись в 1900—1901 гг. После этого шло их бы­строе развитие как по конструкции, так и по рос­ту единичных мощностей. Крупнейшие турбоге­нераторы в период 1900—1920 п. изготавлива­лись шестиполюсными из-за ограниченных воз­можностей металлургии по изготовлению поко­вок для роторов. В 1920 г. в США был изготовлен самый мощный для того времени

 

Рис. 6.2. Макет турбогенератора мощностью 1200 МВт с частотой вращения 3000 об/мин Костромской ГРЭС

 

турбогенератор мощностью 62.5 МВт, частотой вращения 1200 об/мин. Двухполюсные турбогенераторы выполнялись мощностью лишь до 5,0 МВт.

После 1920 г. основное развитие получили двух- и четырехполюсные турбогенераторы. Еди­ничные мощности этих машин быстро росли. Ве­дущими странами в области турбогенераторостроения были и остаются Англия, Германия, Россия, США, Франция, Швейцария, Япония.

Первый турбогенератор в нашей стране мощ­ностью 500 кВт был изготовлен в 1924 г. заводом «Электросила». В том же году были изготовлены еще два турбогенератора мощностью по 1500 кВт. Эти первые машины послужили основой для соз­дания в последующие годы серии турбогенерато­ров в диапазоне мощностей от 0,5 до 24 МВт при частоте вращения 3000 об/мин. За 1926 и 1927 гг. было сделано 29 таких турбогенераторов. Эти машины создавались под руководством выдаю­щегося инженера—организатора производства А.С. Шварца.

В начале 30-х годов на заводе «Электросила» была создана новая серия турбогенераторов с мощностями от 0,75 до 50 МВт. Существенное значение имело то, что при создании этой серии был широко использован опыт Западной Европы и США в турбогенераторостроении. По сравне­нию с предшествующей серией удалось снизить массу меди в обмотке статора на 30 %, а электро­технической стали на 10—15 %. При этом была уменьшена трудоемкость изготовления машин. Все электромагнитные, тепловые, вентиляцион­ные и механические расчеты были выполнены по новым расчетным методикам. Машины изго­товлялись из отечественных материалов. Уже к 1 января 1935 г. на отечественных тепловых электростанциях было смонтировано 12 таких турбогенераторов мощностью по 50 МВт.

На основе турбогенераторов последней се­рии были проведены разработки и началось изготовление быстроходных турбодвигателей мощностью от 1 до 12 МВт с частотой вращения 3000 об/мин для турбовоздуходувок и турбоком­прессоров.

Особое значение имеет цикл исследований и разработок, завершившихся изготовлением в 1937 г. самого мощного в мире турбогенерато­ра на 100 МВт с частотой вращения 3000 об/мин и косвенным воздушным охлаждением. Основ­ные трудности были связаны с ротором. Метал­лурги справились с созданием поковки больших размеров из высококачественной стали, а электромашиностроители —с ее механической обра­боткой- потребовавшей исключительно высокой точности.

Под руководством Р.А. Лютера и А.Е. Алек­сеева были выполнены расчеты и разработаны конструкции предвоенных серий турбогенераторов и отдельных машин.

В последующие годы возникла необходи­мость в освоении турбогенераторов большей мощности — 200 и 300, а в последующие годы 500, 800, 1000 и даже 1200 МВт при частоте вра­щения 3000 об/мин (рис. 6.2). Основные пробле­мы при создании турбогенераторов таких мощ­ностей создает ограничение диаметра ротора и расстояния между его опорами. В первом случае ограничение обусловлено механической проч­ностью, а во втором случае — вибрациями. В этих условиях увеличение мощностей достигает­ся за счет применения более интенсивных спо­собов охлаждения, позволяющих повысить плотность тока в обмотках. Сложность при этом состоит в необходимости не только сохранения, но и некоторого повышения КПД, а также умень­шения вибраций. Все это потребовало очень большого объема теоретических и эксперимен­тальных исследований, создания опытных ма­шин и строительства уникальных испыта­тельных стендов.

Исследования, разработки и производство мощных турбогенераторов проводились в СССР на трех заводах: «Электросила» (г. Ленинград), «Электротяжмаш» (г. Харьков) и «Сибэлектромаш» (г. Новосибирск). На каждом заводе созда­вались свои конструкции и технологические процессы.

На заводе «Электросила» впервые в мировой практике было предложено и освоено водород­ное охлаждение роторов с заборниками и де­флекторами, а также водяное охлаждение обмот­ки статора. Все работы проходили вначале под руководством главного инженера завода Д.В. Ефремова, главных конструкторов Е.Г. Ко­мара и Н.П. Иванова, а затем главного инженера Ю.В. Арошидзе, главного конструктора турбоге­нераторов Г.М. Хуторецкого и руководителя на­учно-технических и опытно-конструкторских работ завода Л.В. Куриловича. Водород является лучшим хладагентом по сравнению с воздухом. Использование водорода началось с турбогене­ратора мощностью 100 МВт и частотой враще­ния 3000 об/мин, который был изготовлен в 1946 г. Он имел косвенное водородное охлажде­ние для роторной и статорной обмоток. Вполне естественно, что система охлаждения сердечни­ка статора была в принципе такой же, как и при воздушном охлаждении. Потребовался переход от косвенного охлаждения обмоток к непосредственному. В катушках ротора выполнялись диа­гональные каналы, подача водорода в которые осуществлялась заборниками, а отвод — дефлек­торами. Заборники и дефлекторы — клинья для крепления обмотки с профильными отверстиями для прохождения газа. При увеличении мощно­стей требовалось повышение давления водоро­да. Таким образом, газ непосредственно сопри­касался с медью ротора. Стержни обмотки статора выполнялись из полых медных провод­ников, между которыми укладывались сплош­ные проводники. Вода, протекая по полым про­водникам, обеспечивала непосредственное охла­ждение статорной обмотки.

Для радикального снижения вибраций кор­пусов машин применялась эластичная связь между сердечником и корпусом. Это достига­лось с помощью продольных прорезей в ребрах прямоугольного сечения, на которых собирается сердечник.

Особые трудности возникли при создании турбогенератора мощностью 800 МВт. В связи е очень большими электродинамическими сила­ми и условиями работы, близкими к резонанс­ным, оказались неприемлемыми обычные спосо­бы крепления лобовых частей обмоток. Моно­литное крепление было достигнуто с помощью новых крепящих материалов: мягкого материа­ла, формирующегося при комнатной температу­ре, т.е. в процессе изготовления машины, и твер­деющего при повышенной температуре, а также самоусаживающихся лавсановых шнуров.

Под руководством А.Б. Шапиро и И.А. КадиОглы были разработаны оригинальные турбоге­нераторы с еще более интенсивным водяным ох­лаждением обмоток ротора и статора, сердечни­ка статора и некоторых конструктивных элемен­тов. Первый турбогенератор с полностью водя­ным охлаждением мощностью 63 МВт и часто­той вращения 3000 об/мин был введен в эксплуа­тацию в 1969 г. В дальнейшем были сделаны еще три таких машины. В 1980 г, был включен турбо­генератор мощностью 800 МВт и частотой вра­щения 3000 об/мин. В дальнейшем начали рабо­тать еще четыре машины. В их конструкции по­дача и слив воды осуществлялись помимо вала. Вода из неподвижной трубы поступает в зону фасонного кольца на роторе и удерживается в нем центробежными силами. Далее вода идет в нижние выводы катушек из прямоугольных проводов с отверстиями и под действием центро­бежных сил попадает в верхние выводы и слив­ное кольцо. Такая система называется самона­порной. Следует заметить, что во всем мире по­дача воды в обмотку ротора и ее отвод про­исходят через отверстия в валу, что делает кон­струкцию очень сложной и менее надежной. Преимуществом этого класса турбогенераторов является исключение водорода и заполнение корпуса воздухом при атмосферном давлении.

На заводе «Электротяжмаш» (г. Харьков) разработки и изготовление турбогенераторов мощностью 200, 300 и 500 МВт и частотой вра­щения 3000 об/мин проводились главным конст­руктором завода Л.Я. Станиславским, замести­телем главного конструктора В.С. Кильдишевым, главным инженером Н.Ф. Озерным и на­чальником производства И.Г. Гринченко. Мето­ды расчета турбогенераторов, особенно торце­вой зоны, были развиты заведующим отделом Института электродинамики Академии наук УССР И.М. Постниковым.

В машине мощностью 200 МВт ротор с водо­родным, а статор — с водяным охлаждением. В турбогенераторе мощностью 300 МВт исполь­зуется непосредственное водородное охлажде­ние как для роторной, так и для статорной обмо­ток. В роторе используется аксиально-радиаль­ная вентиляция. В стержне статорной обмотки прокладываются тонкостенные стальные труб­ки, по которым проходит газ- В турбогенерато­рах мощностью 500 МВт обмотки статора и ро­тора образованы из полых и сплошных провод­ников. Вода подается в обмотку ротора и отво­дится из нее через отверстия в валопроводе.

На заводе «Сибэлектротяжмаш» (г. Новоси­бирск) был освоен турбогенератор мощностью 500 МВт и частотой вращения 3000 об/мин с мас­ляным охлаждением обмотки статора и сердеч­ника и водяным охлаждением обмотки ротора. Внутрь расточки статора вводится и герметично закрепляется в щитах цилиндр из стеклоленты. Масло с одной стороны статора проходит в дру­гую через каналы в стержнях обмотки и через ак­сиальные отверстия в сердечнике. Вода к обмот­ке ротора поступает через валопровод. Напряже­ние статорной обмотки равно 35 кВ, что сущест­венно облегчает токоподводы от генератора к повышающему трансформатору.

В организацию производства, методы расче­та, технологические процессы и конструкции рассмотренных уникальных турбогенераторов решающий вклад внесли П.Е. Базунов, К.Ф. Потехин и К.И. Масленников.

Существенные работы были проведены на Лысьвенском турбогенераторном заводе (г. Лысьва, Пермской обл.) в области турбогенераторов средней мощности. Особенно высокую оценку получили синхронные двухполюсные двигатели мощностью 630—12 500 кВт, напря­жением 6 и 10 кВ. Они применяются в приводах нефтяных насосов магистральных нефтепрово­дов, нагнетателей магистральных газопроводов, воздуходувок доменных печей, газовых ком­прессоров химических производств и др. Их ос­воение было закончено в 1980 г.

По сравнению с предыдущей серией масса двигателей новой серии снижена в 1,5—2 раза, повышен КПД на 0,5—2 %, снижена трудоем­кость изготовления в 1,5 раза и увеличен объем выпуска в 3 раза без увеличения производствен­ных площадей. По своему техническому уровню двигатели превысили показатели лучших миро­вых образцов. Наиболее существенный вклад в расчеты и конструкции двигателей внесли Э.Ю. Флейман и В.П. Глазков, а в системы воз­буждения — С.И. Логинов.

Подводя итоги исторического развития тур­богенераторов в послевоенные годы, следует от­метить успехи научно-технической деятельно­сти коллективов нескольких заводов, в результа­те чего были созданы и освоены в производстве турбогенераторы различных конструкций. Одна­ко наличие различных конструкций усложняет проектирование и строительство электростан­ций, монтажные, наладочные и ремонтные рабо­ты, а также обеспечение запасными частями. По­этому в рамках одной страны становится жела­тельным выпуск машин единой конструкции, В зарубежной практике (Франция, Англия, Шве­ция, Швейцария) эта проблема решается путем объединения электротехнических фирм и спе­циализации производства. В нашей стране с це­лью создания единой унифицированной серии турбогенераторов для всех заводов была разра­ботана и выполнена обстоятельная программа исследований и разработок машин единой серии (научный руководитель И.А. Глебов, зам. науч­ного руководителя Я.Б. Данилевич, главный конструктор ГМ. Хуторецкий, главный технолог Ю.В. Петров). Требования к новой серии форму­лировались с участием специалистов стран-членов Совета экономической взаимопомощи. В основу серии были положены турбогенераторы с водоводородным охлаждением производства объединения «Электросила», поскольку их чис­ло было наибольшим и имелся положительный опыт их эксплуатации во всем диапазоне мощно­стей от 63 до 800 МВт при частоте вращения 3000 об/мин. Освоение турбогенераторов еди­ной унифицированной серии началось в 1990 г.

К наиболее крупным достижениям зарубеж­ных фирм в области турбогенераторов относят­ся следующие. Фирма «Альстом-атлантик» вы­пустила серию четырехполюсных турбогенера­торов мощностью 1600 МВ∙А для атомных электростанций; предельная мощность четы­рехполюсных турбогенераторов для атомных электростанций фирмы «Сименс» составляет около 1300 МВ ∙А. Фирма АВВ освоила выпуск турбогенераторов мощностью 1500 МВ ∙А, 1800 об/мин, 60 Гц и турбогенераторов мощно­стью 1230 МВ∙А, 3000 об/мин, 50 Гц. Амери­канские и японские фирмы выпускают турбо­генераторы наибольшей мощностью около 1100 МВ • А- Все фирмы, за исключением «Си­менс», используют водородно-водяное охлаж­дение- Фирма «Сименс» применяет водяное ох­лаждение для обмоток не только статоров, но и роторов.

Необходимо обратить внимание на все уве­личивающийся выпуск турбогенераторов

Рис. 6.3. Общий вид ударного турбогенератора (инерционного накопителя энергии)

1,1,3 — подшипник, статор и вал ротора турбогенератора 200 МВт соответственно; 4,5.6 — подшипник, вал, кожух маховика соответственно; 7 — асинхронный двигатель; 8 — фундаментные плоты

 

средних мощностей — до 250 МВт для тепловых электростанций с комбинированным циклом (две газовые турбины и одна паровая).

В последние годы началось использование парогазовых установок. Поскольку предельная мощность газовых турбин в настоящее время со­ставляет 150—200 МВт, то парогазовая система мощностью 450—600 МВт состоит из трех бло­ков: два с газовыми турбинами и один с паровой. Поскольку для таких блоков нужны турбогенера­торы сравнительно небольших мощностей (150—200 МВт), для упрощения их конструкции вернулись к воздушному охлаждению. Первый турбогенератор мощностью 150 МВт и частотой вращения 3000 об/мин с воздушным охлаждени­ем изготовлен для Северо-Западной ТЭЦ в 1996 г. в АО «Электросила».

К особому классу относятся ударные турбо­генераторы кратковременного действия. Они применяются для испытания выключателей, для экспериментальных установок термоядерного синтеза на базе токамаков, крупных плазмотронов, установок ускорения масс и др. Для экспериментального токамака со сверхсильным полем были разработаны и выполнены четыре двух­полюсных турбогенератора мощностью по 200 МВт (242 МВ • А). Такие турбогенерато­ры созданы впервые в мировой практике (рис. 6.3). В них применяется косвенное воздуш­ное охлаждение. С целью снижения габаритов генераторы выполнены с повышенным насыще­нием магнитной цепи. На общем валу с генерато­ром находится инерционный накопитель, сде­ланный на основе ротора турбогенератора мощ­ностью 800 МВт. Запасенная энергия в генерато­ре равна 100, а в маховике — 800 МДж. Удельная энергоемкость ротора генератора составляет 5, а маховика — 10 Дж/г Длительность импульса равна 5 с. Во время выдачи накопленной энергии частота вращения уменьшается до 70 %. Таким образом, используется 50 % энергии. Удельная стоимость накопленной энергии получается наи­меньшей по сравнению со стоимостью энергии других видов накопителей. Количество энергии может быть доведено до 2500 МДж за счет ис­пользования более прочной стали и увеличения диаметра маховика. Пуск установки осуществ­ляется асинхронным двигателем с фазным рото­ром на валу агрегата или преобразователем час­тоты с питанием от сети. И.А. Глебовым, Э.Г. Кашарским и Ф.Г. Рутбергом разработаны методы расчета, выполнены технические прора­ботки различных вариантов и их сопоставление, обоснование турбогенераторного исполнения в отличие от гидрогенераторного, применяемого в зарубежной практике [6.32]. Проект был выпол­нен Г.М. Хуторецким, а металлургические про­блемы решены А.М. Шкатовой.

Следует заметить, что в начале 20-х годов XX в. русские ученые М.П. Костенко и П.Л. Ка­пица сделали проект и осуществили первый ударный генератор для создания сильных маг­нитных полей.

В Томском политехническом институте под руководством и при непосредственном участии Г.А. Сипайлова была создана научная школа в области электромашинного генерирования им­пульсных мощностей в автономных режимах [6.33, 6.34]. Были проведены многочисленные исследования, разработаны методы расчета и создан ряд импульсных генераторов. К числу оригинальных решений относятся электрома­шинные генераторы с неявнополюсным шихто­ванным ротором и импульсной форсировкой возбуждения за счет намагничивания в несим­метричных режимах при последовательных ком­мутациях обмоток статора и ротора.

Принципиально новым направлением явля­ются сверхпроводниковые турбогенераторы, имеющие в 2 раза меньшую массу и потери. Вполне естественно, что вначале создавались опытные сверхпроводниковые машины неболь­шой мощности (синхронные, униполярные, по­стоянного тока) [6.35—6.37].

Во ВНИИэлектромаше были созданы сле­дующие сверхпроводниковые машины: коллек­торный двигатель постоянного тока мощностью 3 кВт, синхронный генератор мощностью

Рис. 6.4. Испытательный стенд со сверхпроводниковым турбогенератором мощностью 20 МВ∙А (в центре рисунка)

18 кВт, униполярный генератор с током 10 кА при напряжении 24 В и синхронный генератор мощностью 1200 кВт. Первые четыре машины были созданы под руководством и при непосред­ственном участии В.Г. Новицкого и В.Н, Шахтарина. В разработку и исполнение двигателя по­стоянного тока 3 кВт существенный вклад внес также Г.Г. Бортов. Синхронный генератор мощ­ностью 1200 кВт был разработан и выполнен под руководством В.В. Домбровского.

Первый генератор средней мощности (20 МП • А) был создан во ВНИИэлектромаше в 1979г. (рис. 6.4) [6.38]. Машина была подробно исследована и испытана на стенде института и при работе в Ленэнерго. Ротор име­ет обмотку из ниобий-титанового сплава. Она охлаждается жидким гелием (4,2 К), который по­ступает внутрь ротора через неподвижную труб­ку в центральном отверстии вала. Возврат гелия в газообразном состоянии происходит также через вал. Для защиты сверхпроводящей обмотки от теплопритока из внешней среды ротор имеет три цилиндра, пространство между которыми вакуумировано.

Научно-исследовательские и опытно-конст­рукторские работы во Всесоюзном научно-ис­следовательском институте электромеханики (ВНИИЭМ) завершились созданием ряда сверх­проводниковых машин. Первая машина имела мощность 600 Вт. Это был генератор со сверхпроводящей обмоткой возбуждения на ста­торе и трехфазной обмоткой на роторе. Следую­щей машиной был коллекторный электродвига­тель мощностью 25 кВт, а далее генератор пере­менного тока мощностью 100 кВт со сверхпроводящим индуктором, криодвигатель переменного тока 200 кВт с неподвижным криостатом, мо­дельные синхронные генераторы с вращающим­ся криостатом, уникальный синхронно-асин­хронный двигатель с передачей вращающего мо­мента без механических сочленений машин. Руководителем, организатором производства и со­исполнителем исследований и разработок был Н.Н. Шереметьевский. Основным разработчи­ком сверхпроводящих индукторов являлся А.С. Веселовский, а якорей — А.М. Рубенраут.

Создателем синхронного сверхпроводнико­вого неявнополюсного генератора мощностью 200 кВт на харьковском заводе «Электротяжмаш» был В.Г. Данько.

В Физико-техническом институте низких температур (ФТИНТ, г. Харьков) инициатором, организатором и научным руководителем всех работ в области использования явления сверх­проводимости был Б.И. Веркин. Сущест­венное значение для исследований, разработок и исполнения машин имели труды Ю.А. Кири­ченко, А.В. Погорелова и Г.В. Гаврилова.

Во ФТИНТ были созданы: криотурбогенератор мощностью 200 кВт с неподвижной обмоткой возбуждения и теплым вращающимся якорем, турбогенератор мощностью 2 и 3 МВт со сверх­проводниковыми роторами (совместно с объеди­нением «Электросила»). Последние две машины создавались с участием специалистов объедине­ния «Электросила» И.Ф. Филиппова и И.С. Жи­томирского. Большая работа проведена в облас­ти униполярных сверхпроводниковых машин: двигатель с якорем дискового типа мощностью 100 кВт, машина мощностью 150 кВт с цилинд­рическим ротором, а затем двигатели мощнос­тью 325 и 850 кВт.

Существенный вклад в теорию и методы рас­чета электрических машин с использованием яв­ления сверхпроводимости внесли ученые Мос­ковского авиационного института А.И. Бертинов, Б.Л. Алиевский, Л.К. Ковалев и др.

В генераторе 20 МВ • А внешний цилиндр ротора имеет комнатную температуру, внутрен­ний — температуру жидкого гелия, а средний — 70 К. Обмотка образована рейстрековыми ка­тушками разной ширины и находится при вра­щении в гелиевой ванне, образованной внутрен­ним цилиндром и торцевыми частями. В связи с очень большой МДС отпадает необходимость в использовании для ротора стали. В этих услови­ях статор можно делать беспазовым. что увели­чивает количество меди и мощность приблизи­тельно в 2 раза. Для малой внешней магнитной индукции в статоре применяется ферромагнит­ный экран. Исследования, разработка методов расчета и технологических процессов, изготов­ление и испытания проводились под руково­дством и при непосредственном участии И.А. Глебова, Я.Б. Данилевича, А.А. Карьшова, Л.И. Чубраевой и В.Н. Шахтарина.

И.А. Глебов был научным руководителем, Я.Б. Дакилевич — главным конструктором, А.А. Карымов — автором новых методов меха­нических расчетов, Л.И. Чубраева — специали­стом, ответственным за изготовление статора и испытания сверхпроводникового турбогенера­тора в энергосистеме. В.Н. Шахтарин — специа­листом, ответственным за разработку и изготов­ление ротора. Поскольку низкие температуры получаются с помощью криогенной техники, то творческое участие в разработках и испыта­ниях генератора мощностью 20 МВ • А специа­листов НИИ «Гелиймаш» И.П. Вишнева, А.И. Краузе имело очень важное значение.

И.П. Вишнев осуществил разработку и руко­водство работами по созданию устройств крио­генной техники, А.И. Краузе провел наладочные работы и испытания криогенных устройств. Осо­бое значение имело их участие в работах по оп­ределению минимальной длительности захолаживания ротора, допустимой по условиям меха­нической прочности его элементов.

Под руководством И.Ф. Филиппова как раз­работчика методов расчета теплофизических процессов и руководителя работ по созданию уникального криогенного стенда и Г.М. Хуторецкого как главного конструктора в объедине­нии «Электросила» был создан сверхпроводни­ковый турбогенератор мощностью 300 МВт, и частотой вращения 3000 об/мин. Статор и ротор прошли успешные испытания при температуре жидкого азота. Однако недостаточная газоплот­ность наружного цилиндра не позволила иметь нужный вакуум и выйти на расчетный режим с жидким гелием.

Сверхпроводниковые турбогенераторы от­носятся к будущему поколению турбогене­раторов. Работы в этом направлении ведутся в ряде стран.

США, государства Западной Европы и Япо­ния имеют существенные успехи в области ис­следований и разработок сверхпроводниковых электрических машин. Наибольших успехов в области сверхпроводниковых турбогенераторов достигли Япония и США. В ФРГ были созданы основные элементы сверхпроводникового тур­богенератора мощностью 800 МВ • А. В Японии имеется национальная программа с конечной за­дачей завоевания мирового рынка в области турбогенераторостроения на основе использования явления сверхпроводимости. В настоящее время в Японии в стадии изготовления находятся три сверхпроводниковых турбогенератора мощно­стью по 70 МВ • А каждый. К наибольшим дос­тижениям в области униполярных сверхпровод­никовых машин относятся результаты работы английской фирмы IRD (униполярный двигатель мощностью 2,42 МВт).

Проведенный выше обзор в области сверх­проводниковых машин, и в первую очередь тур­богенераторов, показывает, что наша страна на­ходится на передовых позициях в мире.




Поделиться с друзьями:


Дата добавления: 2014-12-25; Просмотров: 2023; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.031 сек.